The State of the Wing address

The main and rear spars are in place, and half the ribs are glued to them. It’s tedious and intense work, so I’ll finish them up tomorrow.

I dug the CW42 and CW43 plywood pieces for the wing walk out of the crate and tried test fitting them. As with many of the kit pieces, they simply don’t fit. At all. The nose reinforcing pieces will be usable, with some trimming. The rear pieces… not so much. Once the ribs are fully secured I’ll see if they can be used at all, or if I’ll need to order some new plywood and cut new ones. At the very least, the notches for the cross braces are rounded at the bottom from being cut out with a router with a fairly large bit. I can clean those up with a band saw, but the ends are also not right by a long shot. It will take some work to figure out how or if I can use these.

All in all I’m just happy I didn’t pay full price for this “kit”. I’ve found an awful lot of pieces that, quite frankly, I’d have probably been better off making myself. But at least now I know what to expect.

Wing work 2/10/24

This covers a couple days’ work. Yesterday we ripped the CW37 aileron bay TE stock down to 1/4” and I got that installed. Today I’ll glue in the triangular support pieces. And yes, I realized after cutting and gluing it all up that the CW37 piece is supposed to be notched for the rib caps. I’ll remember that for the next time.

I continue to be astonished at how light and strong this wing is. I can easily lift it off the bench and move it around; it can’t weigh more than 20-25# without the aileron installed.

The last thing that was really bugging me about the aileron was that the lower edge of the leading edge plywood still wasn’t glued down. I’ve got to find a better way on the next aileron, but this one had to be done so we can radius the lower edge.

Stew’s idea was to make a grooved board for the trailing edge and use that to clamp a board across the leading edge while the glue sets. He used a length of scrap cedar with a groove cut to match the angle of the TE, and we used four bar clamps to apply pressure. In hindsight – I honestly don’t know if just putting a radius on the front corner and wrapping plywood around it would be better or not. We’ll see how this works out.

In other news, Stew has his 4’ CNC machine in and working, and I’m going to put him to work cutting my torque tube bearing blocks out of some UHMWPE stock I have. Better than plywood, I think.

Aileron progress

It’s been an on-and-off couple of weeks. I’ve had a persistent cold/bronchitis that has kept me away from the shop for days at a time. On days I do feel like working, I’ve got a house cleanup project that’s been sucking time as well.

This evening I got over to have a look at the aileron. I’m not thrilled with the plywood, to be perfectly honest, but I believe it will be OK. I re-glued a couple of the geodetic braces and glued down a couple of corners of the thin plywood that were loos and/or slightly de-laminating. I think the fabric would probably have been sufficient, but I want to make things as close to perfect as practical. I’ve got a list of things to do differently on the next three ailerons.

I got a few corner blocks installed to make sure the plywood stiffeners don’t flex or bow. The pans don’t call for them, but I’ll feel better knowing they’re there. I also got the ends of the aileron nose plywood trimmed and sanded flush with the ends of the aileron. There’s one more round of gluing to do, then I can use a router to put a radius on the lower front edge and it will be done. I did check the aileron travel; 22 degrees up and down will not be a problem.

Returning to work

It’s been a bit since my last update here. In the past couple of weeks we took a nice cruise vacation, and I developed a pretty severe case of bronchitis. It’s possible these two things are not unrelated; one of the risks you take to get a little Caribbean sun and salt air in the middle of winter, I guess!

I’ve been working to get the leading edge of the aileron wrapped with plywood. Honestly, at this point I can understand how someone would make the decision to scrap an aileron and start from scratch. I don’t think I’ll go quite that far, but there have been challenges. I’m adding to my “lessons learned” for the next three ailerons, that’s for sure. Part of it is just developing a process to get the ply to wrap over the pretty sharply curved top surface. This part I solved with a couple pieces of Styrofoam and some dumbbells, to effectively clamp the aileron to the bench with the ply trapped underneath. That should hopefully take care of the upper portion. The bottom edge of the top piece of ply isn’t yet glued to the structure, so I’ll have to figure that out today.

I’m really looking forward to building the next wing. I’ve learned so much while building this one that I’m pretty sure the next will take a lot less time, although I’ll have to figure out the wing walk on the next one. I talked to a guy building an RS-80 Tiger Moth the other day. He told me about improvements he’s made to his wing walk to avoid seeing the wing deflect when someone steps onto it. I’m not sure how much I’ll be able to do on mine, but he’s using carbon fiber in a substantial number of places on his build. Honestly, the wing walk is one area where I was thinking I would need to beef things up a little anyway… if you’ve met me you’ll understand why.

But, of course the devil is in the details. Every time I think I’m almost finished with this wing I am reminded of all the detail work that has yet to be done. I need to cut and install all of the bushings for the bolts; finish cutting, shaping, and drilling the various aluminum mounting brackets; cut and finish the scallops in the leading edge plywood; figure out and build the transition from leading edge to wingtip bow (most likely foam)… there’s a lot of stuff left to do, but fortunately it’s really only a few days’ work.

Closing out 2023

You think you’re about ready to perform some major step, then you step back and realize you’re not as close as you thought… I thought I was about ready to cut out the aileron, but I still had to get the bottom geodetic braces in as well as several of the plywood stiffening strips that keep the aileron bay and aileron from distorting when the fabric gets shrunk around it. Today I did that, I also got the leading edge plywood wrapped around the rest of the way and glued and clamped in place, and added the last of the wingtip reinforcements along with the gussets for all of those.

I started to shoot primer on the torque tube, but the can stopped spraying about halfway through. Super frustrating, as it’s a full can, It’s been in a cabinet in the garage for a while, so I suspect there was a chunk of unmixed solid that lodged in the valve or something. The spray tip is clear, the can is pressurized, but it refuses to spray. Bummer. I found a can of self-etch primer in another cabinet at home, so hopefully that works. I may end up with a torque tube that’s half gray and half white… oh well.

I’ve been cleaning up the Airpath compass while I wait for the new gaskets and diaphragm from Spruce. This one has a light and I didn’t want to use the incandescent bulb, and I’d already broken one of the wires anyway… so that path was blocked. I had ordered some LED bulbs from Amazon – they are commonly known as type 74 LED bulbs. The spec sheet showed they are about 0.7″ long and 0.23″ diameter. Those arrived today, and they do fit inside the bulb socket. I soldered the wires onto the new LED assembly “backwards”, or with the wires running along the body of the light so the tip goes in first and the connector end faces outward. This puts one of the three chip LEDs directly over the little red window that illuminates the compass. I had to remove about 1mm of the tail end of the lamp assembly so the little cover would close, but with that done it’s near perfect. I’ll get more pictures as soon as the paint I used to touch up the worn spots on the lamp cover is dry. The gaskets are supposed to be here on Tuesday, and I’ve got a can of mineral spirits I can use to fill it… not being willing to spend the extra money on UPS shipping for a pint or so of “compass fluid”, which from what I can tell is basically… mineral spirits.

First wingtip bow

On Monday night we got the wingtip bow put in place and corner blocked. It’s looking very much like a wing now! I also received my order of plywood from Spruce, so was able to cut and glue in the gussets for the compression struts.

Of course there is still work to be done. Some additional bracing needs to be installed for the bow, and the trailing edge will need to be sanded to match the contour of the wing trailing edge. Details, details.

Yesterday I picked up three 12′ long sections of 6061-T6 aluminum tubing. Two of these will become lower wing aileron torque tubes, and the third will become the torque tubes for the upper wings. None of that stuff does not come cheap, I’m telling you. I’ve pretty much blown my materials budget for the month. But, at least now I can continue with aileron construction – once I get back over there to the shop. My darling wife is sick and has tested positive for COVID, so I’m avoiding getting close to anyone for a while just as a general precaution. Once I know I’m not contagious I’ll get back over and get that tube cut to length and resume work.

More left wing work

I’ve been over working on the wing a couple of times since the last post. Stu and I worked out what seems to be the best way to fit the wingtip bow. Yesterday we glued, stapled, and clamped the leading edge plywood to the top of the ribs and the top false spar, but left it at that stage. Wrapping the ply around the leading edge results in the upper edge pulling loose, so we decided to leave it as is and do the rest later on. I was planning on today, but may hold off on that until the wingtip bow is installed — I want to get the corner blocking glued in behind the LE ply, and that may be difficult with the plywood fully wrapped. Don’t know, I’ll need to look at that today.

We spent an hour or two yesterday trying to work out the aileron bits and pieces. The factory cut and drilled plywood bits (CW32, CW34, CW35, etc.) have been both a blessing and a curse. Most of the confusion seems to come from the fact that the CW36 pieces, which attach to the ribs just inboard and just outboard of the aileron bay, are apparently drilled WAY off. The pieces are too long for the wing to begin with — they seem to be sized for a rear spar built with the original 1/2″ thickness. non the current 3/4″. Then there’s a hole marked “more or less” on center, but the actual hole is drilled about 1/8″ or so low, or high, depending on how the piece is flipped. There is no orientation we could find that matches up with the holes drilled in the CW35 pieces that are used to attach the aileron to the torque tube. Fortunately, it really doesn’t matter. I’ll be cutting 1/2″ UHMW end bearings that will attach to those plywood pieces, so we can enlarge those holes as much as needed as long as there’s enough room left to attach the bearing pieces.

What we did get done was to cut and glue in the aileron spar web, and some of the 1/4″ stiffeners before the glue left over from the leading edge ply got too thick to work with. I glued up a test piece with that; the epoxy is a bit thicker than I would normally use, but I may have just been too conservative on that. I can’t think of any reason it wouldn’t give a full strength joint; the test piece will tell me for sure.

For the most part, I’m waiting for my aluminum for the torque tubes to arrive at Millard Metals, and sheets of 1/16 and 1/8 ply to arrive from Spruce. I need the ply to cut gussets for the compression struts, and we don’t want to get much farther into the ailerons without full length torque tubes to keep everything perfectly aligned.

First spar, continued

It’s been a bit of a learning experience building this spar. The amount of glue required, of course, is one thing – about 45 ml or so, I think, for the whole thing. There are still a few pieces of plywood that need to be glued, most of them for the flying wire and N-strut attachment brackets. Yesterday Stu showed me his pneumatic pin nailer, which I plan to use. It’s not unusual to use staples or small brads to hold wood together while glue cures. This thing shoots ridiculously small wire pins — 22 or 24 gauge, I think — with no heads. They’re just enough to hold the wood in place, and won’t need to be removed.

I also found that the spar has about 1/8″ of gradual taper toward the tip end. That was a builder error; it’s supposed to be a constant 5-3/4″ across the entire length. When I assemble the other three they will be correct. It’s not a critical error; I can fix it with shims when the wing is assembled. It’s even noted in the plans that ribs may be shimmed where they attach to the spar. It’s just been an inconvenience. Before I found that taper we’d cut some reinforcing blocks that fit between the spar stiffeners to a constant length. Some needed to be sanded, some needed to be re-cut because they were too long. That’s when I measured the spar height more carefully. I had just measured one end and a spot partway down the spar before — I guess it didn’t occur to me that it would have a taper to it. Everything else is good, there’s no bend, twist, or warping, so it’s good to go.

Other minor things — the plans call out 120-1/4″ for the spar length, but the main caps are 120″. Obviously the quarter inch at the tip isn’t going to make a difference, I’ll just make sure both spars are exactly the same length.

I’ll go over tonight and finish the assembly of this spar, and hopefully get started on the next. I also need to find my box of 4130 steel tubing and see if I’ve got the stock I need to make the bushings for the wings. There are bolts through the wing that hold the attach brackets for the fuselage, struts, and flying & landing wires. All of the holes need steel bushings through them. Simple enough to cut and file to size; I just need the right size tubing. I bought a “grab bag” assortment of random tubing cut-offs from ACS a while back to see if I could learn to weld. If I’ve got a couple feet of the sizes I need, I can use them for this.

Gluing up a wing spar

Yesterday I headed over to Stu’s to glue up all of the pieces to the aft face of the upper right wing spar. There are two full length spruce spar stiffeners, four pieces of plywood at the wing root, spruce blocks placed at each rib location, and four plywood pieces for the flying wire attachment brackets. Then I’ll get to flip it over and do the same on the other side.

When I was building wing ribs, I found that a total of 8 ml or so was about right to make two ribs. Since I did that a lot, I got used to mixing up small batches of T-88 epoxy. Yesterday was the first time I have had to mix relatively large quantities — I went through two 20 ml batches, which is about the most I can do in the little medicine cups I bought for this. Even that left me slightly short. There are a couple of plywood attachment pieces that I didn’t get installed yesterday. System Three makes auto-mixing dispensing cartridges, but they’re substantially more expensive to use. As in, over six times the cost. I think I’ll be sticking to mixing cups. I may need to get some larger ones, though — mixing up 20 ml at a time isn’t going to work for a lot of this stuff.

Spar web update

For anyone else who might be in the same predicament, the fine folks at Homebuilt Airplanes came up with a couple more sources. B&D International carries 5′ x 5′ sheets of Finnish birch aircraft plywood, and will cut and ship UPS. Boulter doesn’t carry as wide a variety, but might be good if you’re closer to the east coast than the west.

The price at B&D is higher than Aircraft Spruce. If you price it by the square foot, it’s not terribly higher. 13%, on the 1/8″ sheet I need. Not terrible.